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Motivation
Deficiencies of the official methodology

! Income distribution is modeled by a

lognormal distribution

! Tails underrepresented

! Discrepancies between macro and

sample averages

We propose:
! Expenditure rather than income

! The distribution is a mixture of

lognormal components

! Transition: changes in labor demand ⇒

discrete mixture

! Control for sample biases wrt

household wealth

! Additional unobserved stratum of super

rich sub-population



Likelihood function
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Difficulties
! Homo/heteroskedastic?

Heteroskedastic: ML estimate need not exist

Comparison? Models are non-nested…

! Number of components?
Likelihood ratio has an unusual distribution (estimation

on the boundary?)
McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test

statistic for the number of components in a normal mixture. Appl.

Stat., 36, 318–324.

Feng, Z. D., C. E. McCulloch (1996). Using bootstrap likelihood

ratios in finite mixture models. J. of the Royal Stat. Soc., B, 58,

609–617.

Information criteria (AIC, SBIC, ICOMP, whatever…)

Goodness of fit (Pearson χ2, Kolmogorov-Smirnov?)
Agha, M., D. S. Branker (1997). Algorithm AS 317. Maximum

Likelihood Estimation and Goodness-of-fit Tests for Mixtures of

Distributions. Appl. Stat., 46 (3), 399--407.



Data
Russian Longitudinal Monitoring Survey

http://www.cpc.unc.edu/rlms/

Carolina Population Center and

Institute of Sociology, RAS
•  Multistage clustered design

•  38 strata, of which 3 are self-representative

metropolitan areas; 1 PSU per stratum

•  4718 households in the design

•  3600-3800 households (~10 ths. individuals)

actually participating

•  panel study

•  got the refusal data from organizers
Mroz, T., L. Henderson, and B.M. Popkin (2001). "Monitoring

Economic Conditions in the Russian Federation: The Russian
Longitudinal Monitoring Survey 1992-2000." Report submitted to
the U.S. Agency for International Development. Carolina
Population Center, University of North Carolina at Chapel Hill.



Weights
Apart from the design weights that account for probability

to be included into the sample by design, we wanted also

to account for probability of non-response that we

believed to be related to the household wealth.

Prob[refrain from survey at least once]=logit(•)

log(Wealth) Urban, metro Education

0.399
(0.079)**

++ U-shaped

Refusal probabilities
within sample prediction

Smoothed per capita expenditures
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Implementation and results
Stata 6 module available from author’s website

http://www.komkon.org/~tacik/stata
! Parameter transformations

To ensure numerical stability and maximization without
constraints: σ2 → log(σ2); φ → multinomial logit(φ)

! Convergence
Declared if changes to the likelihood are small, and/or the
changes in the estimated parameters are small, and/or gradient
is small.
Restart if the estimated covariance matrix is singular, or too
many iterations performed.

! Multiple maxima
Yes, there are. If the number of components is greater than the
“optimal” one, then you are bound to find 3-5-… maxima.

! Bad identification
Two or more components can stick together; most of the time
diagnosed by the convergence tracer.

! Large samples curse
Sample sizes 1-3·103: χ2 statistic is U-shaped wrt K.
Sample size 104: χ2 statistic is ≥50.

! Outlier sensitivity
Especially for the heteroskedastic model



Distribution estimates
The “best” models identified within the homoskedastic

version included three components, with the dominant

modal one.
Mean log expenditure Share of the component

6.340 95.8%

8.282 2.3%

4.159 1.8%

The estimate of sigma = 0.756

 
Estimated densities

Log expenditure
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Unobserved households
Assumption: there is a completely unobserved sub-
population at the top end of the distribution
•  expenditure well above those in the sample
•  responsible for the discrepancy between the macro

and sample averages (1211 vs 932 rubles)
•  modeled as an additional lognormal component with a

very small population share
When the component is included, Lorenz curve shifts
down dramatically, and Gini increases from 0.48 to 0.61.
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Sensitivity analysis shows gradual moves of the Lorenz
curve and changes in Gini value, respectively.



Conclusions
! Lognormal approximation is inadequate

but not awful

! Mixture model is a better approximation,

although rather computationally intensive

! Wealthy population underrepresented,

arguably quite seriously

! Parametric bootstrap reconstructs the

unobserved stratum: Gini 0.5-0.6.

Published as:

Aivazian, S., and S. Kolenikov (2001). Poverty and

Expenditure Differentiation of Russian Population.

EERC Working Paper, #01/01E.
http://www.eerc.ru/publications/workpapers/WP_01-01e.pdf



Further development (?)
! EM algorithm: update means & variances —

update proportions
Peters, B. C. Jr., H. F. Walker (1978). An Iterative Procedure for Obtaining

Maximum-Likelihood Estimates of the Parameters for a Mixture of

Normal Distributions. SIAM J. of Appl. Math., 35 (2), 362–378.

Xu, L., M. I. Jordan (1996). On Convergence Properties of the EM

Algorithm for Gaussian Mixtures. Neural Computation, 8, 129–151.

! penalized likelihood for difference in variances



Large sample
weighted noinit: 9176 observations

Results with strata <1% are discarded (most of the runs with 4-5 components)
# LL,

+11000

Chi2 df p AIC,

 -23000

SBIC,

 -23000

sigma m1 share

1

m2 share

2

m3 share

3

m4 share

4

m5 share

5

1 component

20 -684.61 175.18 11 0.00 387.46 . .865 6.343

2 components

9 -618.34 124.08 9 0.00 244.67 273.17 .826 6.370 .989 3.914 .011

10 -633.65 125.11 9 0.00 275.29 303.79 .838 6.326 .9936 8.968 .0064

Model 1 identified: 5

3 components

18 -532.21 76.867 7 0.00 76.42 119.17 .756 6.340 .958 8.282 .023 4.159 .018

Model 2.2 identified: 3

Model 2.1 identified: 2

5 components

8 -515.97 69.32 3 0.00 51.95 123.19 .684 6.294 .8762 3.022 .0022 9.766 .0023 4.652 .0354 7.562 .0840

Model 3.1 identified: 5

Model 2.2 identified: 3



Smaller sample
3619 observations (1 outlier)

initial improve Iteration

0

Last iteration AIC ICOMP Chi2() Prob Freq Components

1 (1) 3564.37 3565.68 65.55 (12) 0.000 always Mode

2 -2727.33 -2093.25 -2000.10 -1730.96 (5/9) 3461.93 3473.32 43.27 (10) 0.000 5 Mode + R hump (<1%)

2 -2727.33 -1896.25 -1896.25 -1761.27 (6/9) 3522.53 3534.15 43.80 (10) 0.000 4 Mode + L hump (1.1%)

2 3 Mode^2

3 -2789.54 -1810.20 -1810.20 -1698.39 (6/7) 3396.78 3410.52 17.40 (8) 0.026 5 Mode + L hump (2.0%)
+ R hump (0.5%)

3 -2789.54 -1799.46 -1729.60 -1710.85 (8) 3421.71 3439.75 33.88 (8) 0.000 1 Mode + R hump (1.5%)+ outlier

3 -1730.96
-1761.27

4 Mode + hump^2
or Mode^2 + hump

4 -1698.39 6 Mode^2 + L hump (2.0%)
+ R hump (0.5%)

4 -2814.77 -2482.82
-2170.17

-1830.13
-2066.80

-1669.55
(6/24)

3339.09 3367.64 12.00 (6) 0.062 3 Mode + L hump (2.9%)
+ R hump (1.4%) + outlier

4 -2826.54 -2043.54 -1777.81 -1698.22 (8) 3396.44 3482.75 17.42 (6) 0.008 1 Mode + L hump (2.1%) + LL
hump (<.1%) + R hump (1.1%)

5 -2826.54 -2052.48
-1997.30
-1752.56

-1794.78
–1707.12
-1697.35

-1668.41 (7/8) 3336.82 3361.98 11.04 (4) 0.026 3 Mode + L hump (3.6%) + LL
hump (0.1%) + R hump (1.4%) +
outlier

5 -2826.54 -1912.52
-1838.38

-1900.05
-1687.89

-1667.17
(8/16)

3334.34 3361.70 9.22 (4) 0.056 2 Mode + R hump (3.1%) + L
hump (3.2%) + RR hump (0.3%)
+ outlier

5 -1669.55 4 Mode^2 + L hump (2.9%) + R
hump (1.4%) + outlier


