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1. Introduction

Decomposition techniques are used in many fields of economics to help disentangle and

quantify the impact of various causal factors. Their use is particularly widespread in studies

of poverty and inequality. In poverty analysis, most practitioners now employ

decomposable poverty measures — especially the Foster et al. (1984) family of indices —

which enable the overall level of poverty to be allocated among subgroups of the

population, such as those defined by geographical region, household composition, labour

market characteristics or education level. Recent examples include Grootaert (1995),

Szekely (1995), Thorbecke and Jung (1996). Other dynamic decomposition procedures are

used to examine how economic growth contributes to a reduction in poverty over time, and

to assess the extent to which the impact of growth is reinforced, or attenuated, by changes

in income inequality: see for example, Ravallion and Huppi (1991), Datt and Ravallion

(1992) and Tsui (1996). In the context of income inequality, decomposition techniques

enable researchers to distinguish the “between-group” effect due to differences in average

incomes across subgroups (males and females, say), from the “within-group” effect due to

inequality within the population subgroups. (See ???). Decomposition techniques have also

been developed in order to measure the importance of components of income such as

earnings or transfer payments.

Despite their widespread use, these procedures have a number of shortcomings which

have become increasingly evident as more sophisticated models and econometrics are

brought to bear on distributional questions. Four broad categories of problems can be

distinguished. First, the contribution assigned to a specific factor is not always interpretable

in an intuitively meaningful way. As Chantreuil and Trannoy (1997) and Morduch and

Sinclair (1998) point out, this is particularly true of the decomposition by income

components proposed by Shorrocks (1982). In other cases, the interpretation commonly

given to a component may not be strictly accurate. Foster and Shneyerov (1996), for

example, question the conventional interpretation of the between-group term in the

decomposition of inequality by subgroups.

The second problem with conventional procedures is that they often place constraints

on the kinds of poverty and inequality indices which can be used. Only certain forms of

indices yield a set of contributions that sum up to the amount of poverty or inequality that
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requires explanation. Similar methods applied to other indices require the introduction of a

vaguely defined residual or “interaction” term in order to maintain the decomposition

identity. The best known example is the subgroup decomposition of the Gini coefficient,

which has exercised the minds of many authors including Pyatt (1976) and Lambert and

Aronson (1993).

A less familiar, but potentially much more serious, problem concerns the limitations

placed on the types of contributory factors which can be considered. Subgroup

decompositions can handle situations in which the population is partitioned on the basis of a

single attribute, but have difficulty identifying the relevant contributions in multi-variate

decompositions. Nor is there any established method of dealing with mixtures of factors,

such as a simultaneous decomposition by subgroups (into, say, males and females) and

income components (say, earnings and unearned income). As more sophisticated models

are used to analyse distributional issues, these limitations have become increasingly evident.

The studies by Cowell and Jenkins (1995), Jenkins (1995), Bourguignon et al. (1998), and

Bouillon et al. (1998) illustrate the range of problems faced by those trying to apply current

techniques to complex distributional questions.

The final criticism of current decomposition methods is that the individual applications

are viewed as different problems requiring different solutions. No attempt has been made to

integrate the various techniques within a common overall framework. This is the main

reason why it is impossible at present to combine decompositions by subgroups and income

components. Yet the individual applications share certain features and objectives which

enable a common structure to be formulated. Let I represent an aggregate statistical

indicator, such as the overall level of poverty or inequality, and let ,

denote a set of contributory factors which together account for the value of I. Then we can

write

(1.1) ,

where  is a suitable aggregator function representing the underlying model. The

objective in all types of decomposition exercises is to assign contributions C  to each of thek

factors X , ideally in a manner that allows the value of I to be expressed as the sum of thek

factor contributions.
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The aim of this paper is to offer a solution to this general decomposition problem and to

compare the results with the specific procedures currently applied to a number of

distributional questions. In broad terms, the proposed solution considers the marginal effect

on I of eliminating each of the contributory factors in sequence, and then assigns to each

factor the average of its marginal contributions in all possible elimination sequences. This

procedure yields an exact additive decomposition of I into m contributions.

Posing the decomposition issue in the general way indicated by (1.1) highlights formal

similarities with problems encountered in other areas of economics and econometrics. Of

particular relevance to this paper is the classic question of cooperative game theory, which

asks how a certain amount of output (or costs) should be allocated among a set of

contributors (or beneficiaries). The Shapley value (Shapley, 1953) provides a popular

answer to this question. The proposed solution to the general decomposition problem turns

out to formally equivalent to the Shapley value, and is therefore referred to as the Shapley

decomposition. Rongve (1995) and Chantreuil and Trannoy (1997) have both applied the

Shapley value to the decomposition of inequality by income components, but fail to realise

that a similar procedure can be used in all forms of distributional analysis, regardless of the

complexity of the model, or the number and types of factors considered. Indeed, the

procedure can be employed in all areas of applied economics whenever one wishes to

assess the relative importance of the explanatory variables.

The paper begins with a description of the general decomposition problem and the

proposed solution based on the Shapley value. Section 3 shows how the procedure may be

applied to three issues concerned with poverty: the effects of growth and redistribution on

changes in poverty; the conventional application of decomposable poverty indices; and the

impact of population shifts and changes in within-group poverty on the level of poverty

over time. 

Section 4 looks in more detail at the features of the Shapley decomposition in the

context of a hierarchical model in which groups of factors may be treated as single units.

This leads to a discussion of the two-stage Shapley procedure associated with the Owen

value (Owen, 1977). A number of results in this section establish the conditions under

which the Shapley and Owen decompositions coincide, and indicate several ways of

simplifying the calculation of the factor contributions. These results are then used to
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generate the Shapley solution to the multi-variate decomposition of poverty by subgroups, a

problem which has not been solved before.

In Sections 5 and 6, attention turns to inequality analysis, beginning with decomposition

by subgroups using the Entropy and Gini measures of inequality. This is followed by a

discussion of the application of the Shapley rule to decomposition by source of income.

The main purpose of these applications is to see how the Shapley procedure compares

with existing techniques in the context of a variety of standard decomposition problems.

The overall results are encouraging. In all cases, the Shapley decomposition either replicates

current practice or (arguably) provides a more satisfactory method of assigning

contributions to the explanatory factors. However, the greatest attraction of the procedure

proposed in this paper is that it overcomes all four of the categories of problems associated

with present techniques. As a consequence, it offers a unified framework capable of

handling any type of decomposition exercise. After summarising the principal findings of

this paper, Section 8 briefly discusses the wide range of potential applications to issues

which have not previously been considered candidates for decomposition analysis.

2.  A General Framework for Decomposition Analysis

Consider a statistical indicator I whose value is completely determined by a set of m

contributory factors, X , indexed by , so that we may writek

(2.1) ,

where  describes the underlying model. In the applications examined later, the indicator

I will represent the overall level of poverty or inequality in the population, or the change in

poverty over time. The factor   may refer to a conventional scalar or vector variable, but

other interpretations are possible and often desirable; for the moment it is best regarded as a

loose descriptive label capturing influences like “uncertain returns to investments”,

“differences in household composition” or “supply-side effects”.

In what follows, we imagine scenarios in which some or all of the factors are eliminated,

and use F(S) to signify the value that I takes when the factors , have been

dropped. As each of the factors is either present or absent, it is convenient to characterise
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the model structure  in terms of the set of factors (or, more accurately, “factor

indices”), K, and the function . Since that the set of factors completely

accounts for I, it will also be convenient to assume throughout that F(i) = 0: in other

words, that I is zero when all the factors are removed.1

A decomposition of  is a set of real values  indicating the

contribution of each of the factors. A decomposition rule C is a function which yields a set

of factor contributions

(2.2)

for any possible model .

In seeking to construct a decomposition rule, several desiderata come to mind. First,

that it should be symmetric (or anonymous) in the sense that the contribution assigned to

any given factor should not depend on the way in which the factors are labelled or listed.

Secondly, that the decomposition should be exact (and additive), so that

(2.3)     for all .

When condition (2.3) is satisfied, it is meaningful to speak of the proportion of observed

inequality or poverty attributable to factor k.

It is also desirable that the contributions of the factors can be interpreted in an intuitively

appealing way. In this respect, the most natural candidate is the rule which equates the

contribution of each factor to its (first round) marginal impact

(2.4)

This decomposition rule is symmetric, but will not normally yield an exact decomposition. A

second possibility is to consider the marginal impact of each of the factors when they are

eliminated in sequence. Let  indicate the order in which the factors are

removed, and let  be the set of factors that remain after factor 



B( |S | , |M | )

|M |

C F
k ' F (S (k ,F ) ^{k}) & F (S (k ,F) ) ' )k F (S (k ,F) ) , k 0 K ,

)k F (S ) / F (S ^{k}) & F (S ) , SfK \{k},

S (Fr , F)

S (Fr % 1 , F ) ^{Fr % 1} r ' 1 , 2 , ... , m&1

j
k 0 K

C F
k ' j

m

r ' 1
C F

Fr
' j

m

r ' 1
[F (S (Fr , F ) ^{Fr}) & F (S (Fr , F) ) ]

' F (S (F1 , F ) ^{F1}) & F (S (Fm , F) ) ' F (K ) & F (i ) ' F (K ) .

C F
k

C S
k (K , F ) '

1
m ! j

F0E
C F

k '
1

m ! j
F0E

)k F (S (k,F) )

' j
m&1

s'0
j

S f K \{k}
|S | ' s

1
m ! j

F0E
S (k , F ) ' S

)k F (S ) ' j
m&1

s'0
j

SfK \{k}
|S |'s

(m&1& s) ! s !
m !

)k F (S ) .

B ( s , m&1) ' (m&1& s) ! s ! / m !

C S
k (K , F ) ' j

S   K \{k}
B ( |S | , |K \{k} |) )k F (S ) ' õ

S f K \{k}
)k F (S ), k 0K ,

õ
S f L

   is the probability of randomly selecting the subset S from M, given that all subset sizes from 0 to2

 are equally likely.

6

has been eliminated. Then the marginal impacts are given by

(2.5)

where

(2.6)

is the marginal effect of adding factor k to the set S. Using the fact that  =

 for  , we deduce

(2.7)   

The decomposition (2.5) is therefore exact. However, the value of the contribution assigned

to any given factor depends on the order in which the factors appear in the elimination

sequence F, so the factors are not treated symmetrically. This “path dependence” problem

may be remedied by considering the m! possible elimination sequences, denoted here by the

set E, and by computing the expected value of  when the sequences in E are chosen at

random. This yields the decomposition rule C  given by S

(2.8)

Using  to indicate the relevant probability,  equation (2.8)2

is expressed more succinctly as

(2.9)  

where  is the expectation taken with respect to the subsets of L.

From (2.7) it is clear that C  is an exact decomposition rule, and also one which treats S
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the factors symmetrically. Furthermore, the contributions can be interpreted as the expected

marginal impact of each factor when the expectation is taken over all the possible

elimination paths.

Expression (2.8) will be familiar to many readers, since it corresponds to the Shapley

value for the cooperative game in which “output” or “surplus” F(K) is shared amongst the

set of “inputs” or “agents” K (see, for example, Moulin (1988, Chapter 5)). The application

to distributional analysis is quite different from the context in which the Shapley value was

conceived, and the results therefore need to be reinterpreted. Nevertheless, it seems

convenient and appropriate to refer to (2.8) as the Shapley decomposition rule.3

3. Applications of the Shapley Decomposition to Poverty Analysis

To illustrate how the Shapley decomposition operates in practice, this section looks at

three simple applications to poverty analysis.

3.1. The Impact of Growth and Redistribution on the Change in Poverty

An important issue in development economics concerns the extent to which economic

growth helps to alleviate poverty. With a fixed real poverty standard, growth is normally

expected to raise the incomes of some of the poor, thereby reducing the value of any

conventional poverty index. However, thus tendency can be moderated, or even reversed,

if economic growth is accompanied by redistribution in the direction of increased inequality.

Datt and Ravallion (1992) suggest a method for separating out the effects of growth and

redistribution on the change in poverty between two points of time. Given a fixed poverty

line, the poverty level at time t (t = 1, 2) may be expressed as a function  of mean

income µ  and the Lorenz curve L . Denoting the growth factor by , and thet t
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redistribution factor by ,  the problem becomes one of identifying the4

contributions of growth G and redistribution R in the decomposition of

(3.1)     

Figure 1: The Shapley decomposition for the growth and

redistribution components of the change in poverty

' (
( '

 F (i) = 0 

Figure 1 illustrates the basic structure of the Shapley decomposition for this example,

which is particularly simple given that there are just two factors, G and R, and hence only

two possible elimination sequences. Eliminating G before R produces the path portrayed on

the left, with the marginal contribution  for the growth factor, and the

contribution  for the redistribution effect. Repeating the exercise for the right-hand
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path, and then averaging the results, yields the Shapley contributions

(3.2)

When growth is absent, G takes the value 0 and the change in poverty becomes

(3.3)  =  = ,

where  =  indicates the rise in poverty due to a shift in the

Lorenz curve from L  to L , holding mean income constant at µ. Conversely, eliminating1 2

the redistribution factor by setting R = 0 yields

(3.4)  =  = ,

where  =  is the rise in poverty due to a change in mean

income from µ  to µ , with the fixed Lorenz curve L. The Shapley contributions for the1 2

growth and redistribution effects are therefore given by

(3.5)

These contributions sum up, as expected, to the overall change in poverty, and have

intuitively appealing interpretations. The growth component, , indicates the rise in

poverty due to a shift in mean income from µ  to µ , averaged with respect to the Lorenz1 2

curves prevailing in the base and final years, while the redistribution effect, , represents

the average impact of the change in the distribution of relative incomes, with the average

taken with respect to the mean income levels in the two periods.

Despite the attractions of the Shapley decomposition values given in (3.5), these are not

the contributions proposed by Datt and Ravallion (1992). Instead, they associate the growth

and redistribution effects with the marginal change in poverty starting from the base year
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situation. This yields the contributions  and .  These do5

not sum to the observed change in poverty, so Datt and Ravallion are obliged to introduce a

residual term E into their decomposition equation

(3.6) .

They acknowledge the criticisms which can be levelled against the residual component, and

note that it can be made to vanish by averaging over the base and final years, as is done in

(3.5). However, this solution is rejected as being arbitrary (Datt and Ravallion, 1992,

footnote 3). Far from being arbitrary, the above analysis suggests that this is exactly the

outcome which results from applying a systematic decomposition procedure to the growth-

redistribution issue. Furthermore, the general framework outlined in Section 2 offers the

chance of extending the analysis to cover not only changes in the poverty line, but also

more disaggregated influences such as changes in mean incomes and income inequality

within the modern and traditional sectors.

3.2 Decomposable Poverty Indices

Another standard application of decomposition techniques involves the use of

decomposable poverty indices. When assigning contributions to subgroups of the

population, such indices enable the overall degree of poverty, P, to be written

(3.7)  ,

where <  and P  respectively indicate the population share and poverty level associated withk k

subgroup . Indices with this propoerty — especially the family of

measures proposed by Foster et al. (1984) — are nowadays used routinely to study the

way in which differences according to region, household size, age, and education attainment

contribute to the overall level of poverty.

In many respects, this is the simplest and most clear-cut application of decomposition

techniques. Suppose, for instance, that the population is partitioned into m regions. Then

factor k can be interpreted as “poverty within region k”, and the question of interest is the
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contribution which this factor makes to poverty in the whole country. Adopting the notation

of Section 2, the model structure  is defined by

(3.8) ,

so

(3.9) .

Since eliminating poverty in region k reduces aggregate poverty by the amount 

regardless of the order in which the regions are considered, it follows from (2.4) and (2.9)

that these values yield both the first round marginal effects and the terms in the Shapley

decomposition; in other words

(3.10)

Not surprisingly, this allocation of poverty contributions to population subgroups accords

exactly with common practice.

A more complex situation emerges if we wish to perform a simultaneous decomposition

by more than one attribute. In fact there is no recognised procedure at present for dealing

with this problem. Suppose, for instance, that the population is subdivided into m  regions1

indexed by K and m  age groups indexed by L. This yields a total of m m  region-age cells2 1 2

which, if treated separately, can be assigned contributions as before, by replacing equation

(3.7) with

(3.11) ,

where the subscripts kR refer to region k and age group R. However, we are more likely to

be interested in the overall impact of poverty in region k, or in age group R, rather than the

contribution of the subgroup corresponding to region k and age group R. In other words,

what we really seek are the  contributions associated with the regional and age

factors.

The Shapley procedure offers a solution to this problem by defining the model structure 

 where

(3.12) .
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  See Proposition 4 in the next section.6
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Eliminating poverty in region k now yields

(3.13) .

In contrast to (3.9) above, equation (3.13) shows that the factors no longer operate

independently: the marginal impact of removing poverty in region k depends on whether

poverty has already been eliminated in one or more of the age groups.

To obtain the Shapley contributions for the regions, first note that  =

 and  = , so

(3.14) .

Note also that (3.13) implies

(3.15)

for all . So choosing any  and setting  yields

(3.16)

or equivalently, in the notation of (3.7), 

(3.17)

Thus, in this two attribute example, each region is assigned exactly half the contribution

that would be obtained in a decomposition by region alone. A similar result applies to the

age group factors. More generally, in a simultaneous decomposition by n attributes, each

factor is allocated one nth of the contribution obtained in the single attribute

decomposition.  6

This result will be comforting to those who use decomposable poverty indices, for it

shows that nothing is lost by looking at each attribute in isolation; the outcomes of multi-

attribute decompositions can be calculated immediately from the series of single attribute



<k t Pk t

)P ' j
k 0 K

[<k 2 Pk 2 & <k 1 Pk 1 ]

)Pk ' Pk 2 & Pk 1 , k 0 K

)<k ' <k 2 & <k 1 , k 0 K

Kp ' { pk , k 0 K}

Ks

+ Kp ^ { Ks }, F ,

F (S ^ T ) ' j
k 0 K

[<k (T ) Pk (S ) & <k 1 Pk 1 ] , S f Kp , T f{ Ks }

Pk (S ) ' 9
Pk 2 if pk 0 S
Pk 1 if pk ó S <k (T ) ' 9

<k 2 if T ' Ks

<k 1 if T ' i

pk 0 Kp

)pk
F (S ^T ) ' <k (T ) Pk (S ^{ pk }) & <k (T ) Pk (S )

' <k (T ) )Pk , S f Kp \{pk} , T f{ Ks } ,

M ' { Ks }^ Kp \{pk}

)pk
F (S ) % )pk

F (M \S ) ' <k (S _{Ks}))Pk % <k ( (M \S ) _{Ks}))Pk

' (<k 1 % <k 2 ))Pk ,

13

results, and the relative importance of different subgroups remains the same, regardless of

the number of attributes considered.

3.3 Changes in Poverty Over Time

Decomposable poverty indices can also be used to identify the subgroup contributions to

poverty changes over time. If  and  represent the population share and poverty level

of subgroup k 0 K  at time t (t = 1, 2), equation (3.7) yields

(3.18) .

The aim here is to account for the overall change in poverty, )P, in terms of changes in

poverty within subgroups, , and the population shifts between

subgroups, .

The subgroup poverty values can be changed independently, so the poverty change

factors may be indexed by the set . However the population shifts

necessarily sum to zero. To avoid complications at this stage, the population shift factors

will be treated as a single composite factor, denoted by . The model structure

 is then given by

(3.19) ,

where

(3.20)    ;    

For each  we have

(3.21)

and setting , it follows that 

(3.22)



S f M

C S
pk

' õ
S f M

)pk
F (S ) '

1

2
õ

S f M
[)pk

F (S ) % )pk
F (M \S ) ]

'
1

2
õ

S f M
(<k 1 % <k 2 ) )Pk '

<k 1 % <k 2

2
)Pk .

)Ks
F (S ) ' j

k 0 K
[<k (Ks ) & <k (i ) ] Pk (S ) ' j

k 0 K
Pk (S ) )<k , S f Kp .

C S
Ks

' õ
S f Kp

)Ks
F (S ) '

1

2
õ

S f Kp

[)Ks
F (S ) % )Ks

F (Kp \S ) ]

'
1

2
õ

S f Kp

j
k 0 K

[Pk (S ) % Pk (Kp \S ) ] )<k

'
1

2
õ

S f Kp

j
k 0 K

[Pk 1 % Pk 2 ] )<k ' j
k 0 K

Pk 1 % Pk 2

2
)<k

)P ' j
k 0 K

<k 1 % <k 2

2
)Pk % j

k 0 K

Pk 1 % Pk 2

2
)<k

14

for all . So, using (3.14), the Shapley contribution associated with the change in

poverty within subgroup k is given by

(3.23)

Conversely

(3.24)

So

(3.25)

This is a very natural allocation of contributions given that we seek a decomposition which

treats the factors in a symmetric way, and given that (3.18) may be rewritten 
 

(3.26) .

4.  Hierarchical Structures

Despite its attractive properties, the Shapley decomposition has one major drawback for

distributional analysis: the contribution assigned to any given factor is usually sensitive to

the way in which the other factors are treated. In many applications, certain groups of

factors naturally cluster together. This leads to a hierarchical structure comprising a set of

primary factors, each of which is subdivided into a (possibly single element) group of

secondary factors. For example, when income inequality is decomposed by source of

income (see Section 6 below), one may first wish to regard income as the sum of labour

income, investment income and transfers. Then investment income, say, might be split into

interest, dividends, capital gains and rent. The Shapley decomposition does not guarantee



+ K , A , F ,

A ' { Lj , j 0 J}

+ K , F ,

+ A , F A ,

F A (T ) ' F (KT ) , T f A

KT ' ^
L 0 T

L , T f A ,

B f A

+ B ^ K \KB , F B ,

F B (S ^ T ) ' F (S ^ KT ) , S f K \KB , T f B

C (

C (

k (K , A , F )

C (

L (K , A , F )

+ K , A , F ,

C (

L (K , A , F ) ' j
k 0 L

C (

k (K , A , F ) , each L 0 A

+ K , F ,

+ A , F A ,

C S
k (K , A , F ) ' C S

k (K , F ) , k 0 K ; C S
L (K , A , F ) ' C S

L (A , F A) , L 0 A .
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that the contribution assigned to earnings will be the same if investment income is treated as

a single entity or viewed in terms of its separate components. Nor does it ensure that the

inequality contributions assigned to the components of investment income sum to the

contribution of investment income treated as a single unit.

To study this issue in more detail, consider a hierarchical model  consisting

of a set of m secondary factors indexed by K, and a partition of K into a set of primary

factors . The fine (i.e. secondary factor) structure of the model is denoted

by . Replacing each set of secondary factors with its corresponding primary factor

produces the aggregated model  defined by

(4.1) ,

where 

(4.2)

denotes the set of secondary factors covered by the subset T of primary factors. More

generally, substituting a subset  of primary factors for their corresponding groups of

secondary factors produces the partially aggregated model defined by

(4.3) .

A decomposition rule for hierarchical models is a function  which assigns the

contribution  to each secondary factor k 0 K, and the contribution

 to each primary factor L 0 A. It will be said to be aggregation consistent for

the model  if

(4.4) ,

or in other words, if the contribution of each primary factor is the sum of the contributions

of its constituents.

Applying the Shapley decomposition both to the fine model structure  and to

the aggregated model  produces the hierarchical decomposition rule

(4.5)



+ A , F A ,

C O
L (K , A , F ) ' C S

L (A , F A ) ' õ
T f A \{L}

[ F A (T ^ {L}) & F A(T ) ]

' õ
T f A\{L}

[ F (KT ^ L ) & F (KT ) ] ' F̄ L (L ) , each L 0 A ,

F̄ L (S ) ' õ
T f A \{L}

[ F (KT ^ S ) & F (KT ) ] , S f L , L 0 A .

+ L , F̄ L ,

C O
k (K , A , F ) ' C S

k (L , F̄ L ) ' õ
S f L \{k}

)k F̄ L (S )

' õ
T f A \{L}

õ
S f L \{k}

)k F(KT ^ S ) , k 0 L , L 0 A .

j
k 0 L

C O
k (K , A , F ) ' j

k 0 L
C S

k (L , F̄ L ) ' F̄ L (L ) ' C O
L (K , A , F ) , each L 0 A

F :{ S | S f K} 6 ú

L f K

)k F (S ^ T ) ' )k F (S ) , all k 0 L , T f L \{k} , S f K \L

k0 L

T ' { k1 , k2 , ... , kt}

  The two-stage decomposition can be extended to a multi-stage procedure if the secondary factors divided into7

tertiary factors, and so on.
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As already mentioned, this procedure does not ensure aggregation consistency. However,

the problem can be overcome by adopting a sequential Shapley approach along the lines

proposed by Owen (1977). First, contributions are allocated as above to each of the

primary factors using the Shapley decomposition of the aggregated model . This

yields

(4.6)

where

(4.7)

The contribution of each primary factor L is then allocated amongst its constituents, by

applying the Shapley decomposition to :

(4.8) .

As the Shapley decomposition is exact, it follows that

(4.9) .

So this two-stage procedure is always aggregation consistent.7

Although the hierarchical form of the Shapley rule is not usually aggregation consistent,

there is one important exception. Let us say that the function  is

separable over  if

(4.10) ;

in other words, the marginal contribution of each factor  does not depend on the other

factors in L. Note that if F is separable over L, then F is also separable over any subset

of L. Note also that if T is written as , then it follows from (4.10) that



F (S ^ T ) & F (S ) ' j
t

r ' 1
)k r

F (S ^ { k1 , ... , kr&1} )

' j
k 0 T

)k F (S ) , all T f L , S f K \L ,

+ K , F ,

L f K

C S
k (K , F ) ' C S

k ({ L}^ K \L , F {L} ) , k 0 K \L

j
k 0 L

C S
k (K , F ) ' C S

{L} ({ L}^ K \L , F {L} )

C S
k (K , F ) ' C S

k ({ K \L ^{k} , F ) , k 0 L

F {L}

L \{k}

+ K , A , F ,

0 A L 0 A k 0 L

C S
k (K , F ) ' C O

k (K , A , F ) ' õ
T f A \{L}

)k F(KT ) ' )k F̄ L (i ) .
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(4.11)

so the marginal effect of introducing any group T of factors from the subset L is the sum of

the marginal effects of introducing each factor separately. 

We now obtain:

PROPOSITION 1: Consider the model , and suppose F is separable over

. Then

(4.12a)  .

(4.12b)  

(4.12c)  .

where  is defined in (4.3).

PROOF: See Appendix.

Proposition 1 establishes three things. Equation (4.12a) shows that treating a separable

subset L as a single entity in the Shapley decomposition does not affect the contributions

assigned to the factors outside L. As a consequence, the sum of the contributions of the

factors in L must equal the contribution of the grouped factor in the more aggregated model,

as indicated in (4.12b). Finally, equation (4.12c) shows that the contribution of any factor k

in a separable set L can disregard the complementary set of factors .

Framed in terms of hierarchical structures, Proposition 1 implies that any separable set

of secondary factors can be replaced by its corresponding primary factor without altering

the contributions of the other factors. This process may be repeated for further separable

groups of factors, thereby establishing:

PROPOSITION 2: Consider the hierarchical model , and suppose that F

is separable over each . Then, for all  and all , we have

(4.13)



L 0 A

k 0 L

+ K , F ,

F (K )

L f K

F (S ) ' 0 S f K \L

L 0 A

+ K , A , F , L 0 A T f A \{L} S f L

F (KT ^ S ) ' 0 T ' A \{L} S Ö i

F̄ L (S ) '
1

|A |
F (KA\{L} ^ S ) '

1

|A |
F (K \L ^ S ) , S f L

)k F̄ L (S ) '
1

|A |
)k F (K \{k} ) '

1

|A |
Mk (K , F ) , k 0 L , S f L \ {k}
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So the Shapley and Owen decompositions coincide, and the Shapley

decomposition is aggregation consistent.

PROOF:  See Appendix.

The results of Proposition 2 enable several short-cuts to be implemented in the

calculation of the Shapley contributions. While the requirement that F is separable over

each  may seem very restrictive, it should ne noted that F is (trivially) separable over

any single element subset of K. So it is always possible to apply Proposition 2, by treating

any non-separable subsets of factors as a set of single factors in the partition A of K. If F is

not separable over the primary factor L, then Proposition 2 leads us to expect that the

Shapley contributions of the secondary factors  will not be obtained by the Owen two-

stage method. In such situations, it may well be the case that the Owen procedure is

favoured, in order to ensure an aggregation consistent decomposition. However, there are

likely to be several alternative ways in which secondary factors can be grouped together

into primary factors, leaving room for judgements about the most appropriate arrangement.

In the general structural model denoted by , factors can interact in complex

ways, and there is nothing to prevent some of the factors being redundant in the sense that

a proper subset of K completely accounts for the initial level, , of the statistic under

examination. This will be captured by saying that the set of factors  is sufficient if

 for all .

The sufficiency property leads to a powerful result when combined with the results of

Proposition 2. For if each of the primary factors  are sufficient in the hierarchical

model  then, for all , all , and all , we have

(4.14)    unless   and .

So

(4.15) ,

and, if F is separable over L, then

(4.16) ,



+ K , A , F ,

0 A L 0 A

C S
k (K , F ) ' C S

k (L , F̄ L ) '
1

|A |
Mk (K , F ) , k 0 L , L 0 A

|A | Mk (K , F )

A ' { Lj , j 0 J}

k 0 Lj

+ K , A , F ,

F (S ) ' j
k 0L j _ S

< j
k P j

k (S ) , each j 0 J , S f K

< j
k P j

k (S )

K \S

P j
k ( S ^ T ) ' P j

k ( S ^{k} ) , all j 0 J , S f K \Lj , T f Lj

k 0 Lj

Lj \ {k}

Lj 0 A F (S ) ' 0 S f K \Lj Lj , j 0 J

C S
k (K , F ) '

1

|J |
Mk (K , F ) '

1

|J |
< j

k P j
k (K ) , all k 0 Lj , j 0 J
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in the notation of (2.4). Combined with Proposition 2, this yields:

PROPOSITION 3: For the hierarchical model , suppose that F is

separable over each , and that each  is sufficient. Then

(4.17) .

Thus, in the context described, the Shapley contributions are determined solely by the

number of primary factors, , and the first round marginal effects, .

The implications of Proposition 3 are well illustrated by returning to the example of

decomposable poverty indices discussed in Section 3.2, which can now be extended easily

to the general multivariate case by defining the primary factors in terms of the attributes

(region, household size, etc.), and the secondary factors in terms of the attribute subgroups.

To be specific, suppose K is partitioned into , where L  refers to attribute j,j

and  is the factor representing poverty within category k of attribute j. Then the

hierarchical model  is characterised by

(4.18) ,

where  and  respectively indicate the population share and poverty level associated

with category k of attribute j after the factors in the set  have been removed, and

where

(4.19) ,

since the poverty level associated with category  is not affected by eliminating poverty

in the categories . Condition (4.19) implies that the function F is separable over each

. Furthermore,  for , so each of the primary factors , is

sufficient. It therefore follows from Proposition 3 and (4.16) that

(4.20) .

This establishes:

PROPOSITION 4: When a  decomposable poverty index is employed in a multivariate

poverty decomposition with n attributes, the Shapley contribution associated with



C S
k '

1

n
< j

k P j
k

< j
k P

j
k

P /n

N ' {1 , 2 , ... , n}

Nk (k ' 1 , 2 , ... , m )

µ1 # µ2 # ... # µm

I (y1 , y2 , . . . , y m ) ' I (w1 b1 , w2 b2 , . . . , wmbm ) ' Ī (w1 , w2 , . . . , wm, b )
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category k of attribute j is given by

(4.21) ,

where  is the population share associated with category k of attribute j and 

is the poverty level observed for this category.

The intuition behind this result is clear. Each of the n attributes accounts for the overall

poverty level P, and must therefore be assigned the contribution , given that the factors

are treated symmetrically. Furthermore, the secondary factors associated with any attribute

operate independently (in the sense captured by the separability property), so the

contribution of each attribute is allocated amongst its constituent factors in proportion to

their marginal effect.

5. Inequality Decomposition by Subgroups

The results obtained in the preceding section assist in the analysis of some of the other

standard applications of decomposition methods. We first consider the question of

decomposing inequality by subgroups, a topic pioneered by Theil (1972) and later

developed by Bourguignon (1979), Shorrocks (1980, 1984), and Foster and Shneyerov

(1996, 1997), amongst others. 

The problem may be posed in terms of a set of  individuals  with

income vector y and mean income µ, which is partitioned into a set of subgroups

 with vectors y  and means µ . Without loss of generality, it may bek
k

assumed that the subgroups are numbered so that , and that each of the

subgroup income vectors are arranged in increasing order. For each subgroup k, denote the

(ordered) vector of relative incomes by w  = y /µ , the relative mean income by b  = µ /µ,k k
k k k

and the share of the population by < . Then for any inequality index I(.) which is symmetrick

and scale invariant (i.e. homogeneous of degree zero), the overall level of inequality can be

expressed as

(5.1) ,

where b = (b , ... , b ). In this framework, decomposition of inequality by subgroups is1 m

typically viewed as the exercise which assigns contributions to inequality within each



K ' {1 , 2 , ... , m}

Ec(y) ' Ec(y1 , ... , yn ) '
1
n j

i 0 N
Nc(yi /µ)

Nc ( t ) ' ( t c & 1) / [c (c & 1)] N1 ( t ) ' t ln t N0 ( t ) ' & ln t

Ec (y1 , y2 , ... , y m ) ' Ē c(w1 , w2 , ... , wm, b ) ' j
m

k ' 1
<k b c

k Ec (wk ) % j
m

k ' 1
<kNc(bk ) .

Wk ' <k b c
k Ec(wk ) , k ' 1 , 2 , ... , m ,

Wk

B ' j
m

k ' 1
<k Nc (bk )
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subgroup (as captured in the vectors w ), and to the “between-group” effect (as captured byk

b). We will think of these as the within-group factors, indexed by , and

the between-group factor indexed by the (single element) set L.

5.1 Entropy Indices

Subgroup inequality decomposition is most often undertaken using an inequality

measure drawn from the entropy family

(5.2) ,

where , c Ö 0, 1; ; and . These

indices yield the decomposition equation

(5.3)

It is standard practice to allocate the contribution

(5.4)

to the within-group factors, on the grounds that  is the amount by which overall

inequality falls when incomes within subgroup k are redistributed equally. The remaining

“between group component”

(5.5)

is the level of inequality which results when the incomes of all individuals are replaced by

the mean of the subgroup to which they belong, and is usually regarded as the contribution

of the between-group factor.

Although this procedure yields an exact decomposition of inequality, the interpretation

of the between-group component, B, is questionable. As Foster and Schneyerov (1996)

point out, eliminating the between-group factor not only removes the component B but also

changes the weights attached to the subgroup inequality values in the within-group



bk ' 1

bk ' $ > 0

bk ' 1

B N ' j
m

k ' 1
<k (b c

k &1) Ec(wk ) % j
m

k ' 1
<kNc (bk ) .

Wk
N ' <k Ec(wk ) , k ' 1 , 2 , ... , m .

B N c ' 0

A ' { K , L}

+ K ^ L , A , F ,

F (S ^ T ) ' j
k 0 S

Wk (T ) % B (T ) , S f K , T f L ,

Wk (L ) ' Wk ; Wk (i ) ' Wk
N ; B (L ) ' B ; B (i ) ' B N

)k F (S ^ T ) ' Wk (T ) , k 0 K , S f K \{k} , T f L ,

C S
K (K ^ L , A , F ) '

1

2
[ F (K ^ L ) & F (L )% F (K ) ] '

1

2 j
k 0 K

[ Wk % Wk
N ]

C S
L (K ^ L , A , F ) '

1

2
[ B % B N ]

C S
k (K ^ L , A , F ) '

1

2
[ )k F (i ) % )k F (L ) ] '

1

2
[ Wk % Wk

N ] , k 0 K ,

  While it is usual to eliminate the between group factor by setting each , there is no compelling reason for8

doing so. We follow standard practice here, but note that setting each  results in only minor

modifications to the analysis.
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component. If the between-group factor is eliminated by setting each ,  then the (first8

round) marginal effect is

(5.6)

Removing the within-group factors in subsequent rounds produces the contributions

(5.7)

The expressions for B and  coincide only when , corresponding to the mean

logarithmic deviation index, E . In all other cases the standard practice of assigning the0

contributions according to (5.4) and (5.5) rests on the implicit assumption that the between-

group factor is eliminated last.

The Shapley decomposition treats the factors symmetrically, and consequently yields an

intermediate solution. Defining K and L as above, and setting , yields the

hierarchical model  where

(5.8)

with . Since

(5.9)

the function F is separable over K, and also (trivially) over L. So by Proposition 2 the

Shapley contributions may be obtained via the Owen two-stage procedure. This gives

(5.10)    

as the contributions of the primary factors, and

(5.11)     

as the contributions of the individual within-group factors.
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G (y) '
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j
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j
m
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2
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j
m
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8 j
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W '
2
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j
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j

i 0 Nk

i (yi & µk) ' j
m

k ' 1
<2

k bk G (y k ) ' j
m

k ' 1
<2

k bk G (wk )

  The methods may be reconciled by explicitly recognising the different treatment of the within- and between-9

group factors. This may be done by redefining the problem so that the between-group term is separated out, and

the questions becomes one of allocating contributions to the within-group factors in the decomposition of I - B.

  For convenience it is assumed that all incomes are distinct, and hence that r  is uniquely defined.10
i
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As already mentioned, standard practice assigns the within- and between-group

inequality contributions given by (5.4) and (5.5). The Shapley decomposition generates the

same assignment when the mean logarithmic deviation index, , is chosen as the measure

of inequality, but the results will not be the same when other indices are employed.  While9

the Shapley decomposition departs from common practice, there is a compelling logic

behind the assignment rule, and to that extent it offers a potential improvement over current

methods.

5.2 The Gini Coefficient

Numerous attempts have been made to decompose the Gini coefficient along similar

lines to equation (5.3). Using the notation described earlier in this section, the most

common method may be formulated by supposing that person i occurs in the ith position

when the distribution is written , and in position r  when all incomes arei

arranged in increasing order.  The value of the Gini coefficient is then given by 10

(5.12)

and yields the decomposition equation

(5.13)

where

(5.14)   

is a weighted sum of the within-group inequality values, and
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(5.15)

is the “between-group component”, indicating the value of the Gini coefficient when all

incomes are replaced by the mean income of the subgroup to which they belong. The final

term, R, in equation (5.13) is a residual or “interaction” effect which vanishes when the

subgroup income ranges do not overlap (so that , for all i), and is otherwise strictly

positive.

The Gini decomposition (5.13) is less satisfactory than the corresponding Entropy

formulation (5.3), because the interaction term introduces a third, vaguely specified,

element into the equation. It is difficult to predict how the interaction effect will respond to

changes in subgroup characteristics, such as a narrowing of income differentials between

subgroups. As a consequence, the overall Gini value may react perversely to such changes:

for example, a reduction in inequality in every subgroup may cause overall inequality to

rise, even when the subgroup means and sizes are held constant. The Shapley

decomposition cannot overcome this “subgroup inconsistency” problem, since this is a

fundamental property of the Gini index. However, it does remove the need for a separate

interaction term, by absorbing this component into the contributions of the within- and

between-group factors.

While the results may be obtained straightforwardly via a suitable computer algorithm,

they do not produce simple analytical formulae. To gain some idea of the outcome,

consider the 2-factor decomposition based on the within-group primary factor, K, and the

between group primary factor, L. The elimination sequence (K, L) yields the marginal

contributions

(5.16) ,

so in this case the whole interaction effect is allocated to the within-group factor. However,

the situation becomes more complex when the between group factor is removed in the first

round, since setting each  not only eliminates the between-group component B in

equation (5.13), but also changes W and R to

(5.17)    and   ,
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respectively, where  is the position of person i when the vector  is

rearranged in increasing order. The elimination path (L, K) therefore produces the marginal

contributions

(5.18) ;   ,

and the Shapley decomposition is given by

(5.19)

This assignment retains the basic features of the Shapley decomposition: the

contributions sum to the overall Gini value, and they correspond to the marginal effect of

removing each factor, averaged over all the elimination sequences. However there seems

little prospect of gaining insights from further inspection of the formulae. One glimmer of

hope is provided by the fact that the contributions in (5.19) may be rewritten as

(5.20)

So the contributions effectively begin with the first round marginal effects  and , and

then allocate half the “surplus” to each of the factors. This is a general consequence of

applying the Shapley decomposition to two factors. However the property does not

generalise easily when the within-group effects are treated separately; and since the model is

not separable with respect to the set of within-group factors (unlike the Entropy case in

Section 5.1), the individual within-group effects are not expected to sum to the combined

within-group effect derived above.  

6. Inequality Decomposition by Source of Income

The last of the conventional decomposition problems concerns the situation in which

income is divided into components such as earnings, investment income, taxes and

transfers, and we seek to identify the contribution of these income sources to overall

income inequality. If  denotes the distribution of income for a population
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of size n, and  is the distribution of income from source  = {1, 2, ... , m}, the

original model may be written

(6.1) ,

where I(@) is an inequality index. This leads naturally to the model structure , where

the factors represent “incomes from source k” and are indexed by K, and the function F(@)

is defined by

(6.2) ,

with the understanding that F(i) = 0. A slightly different formulation results if the factors

are interpreted as “differences in incomes from source k”. Denoting mean income by µ, the

mean income from source k by µ , and the n-tuple of 1’s by e, the model structure nowk

becomes , where

(6.3) .

The distinction between (6.2) and (6.3) is subtle, but important. It is best appreciated by

considering a component of income which is equally distributed — for instance, a poll tax

or subsidy. Since there are no differences across individuals, the marginal impact of

removing these differences is always zero. As a consequence, the Shapley decomposition

based on (6.3) suggests that any equally distributed component of income makes no

contribution to overall inequality. In contrast, in the model based on (6.2), eliminating a poll

subsidy will typically increase income inequality, so here the Shapley decomposition yields a

negative contribution, suggesting an equalising effect (see Proposition 5 below). This

probably accords better with intuition, although, as already indicated, the distinction really

turns on whether one is interested in the contribution of a particular source of income, or in

the contribution of variations in incomes from that source.

Before the results of the Shapley decomposition are discussed, it is worth reviewing the

methods currently used to decompose income inequality by source. If  the variance is

employed as the inequality index, equation (6.1) becomes

(6.4) .
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This suggests the factor contributions:

(6.5)

an assignment rule which Shorrocks (1982) calls “the natural decomposition of the

variance”. Similarly, using (5.12), the Gini index may be written

(6.6) ,

suggesting the “natural decomposition of the Gini” given by

(6.7)

Shorrocks (1982) shows that many other decomposition rules can be constructed, but

narrows down the options using a set of axioms. In combination these yield a unique

decomposition rule in which the relative contribution of each income component is given

by the natural decomposition of the variance, regardless of the choice of inequality index.

For our purposes, the feature of most interest is the fact that both (6.5) and (6.7) —

and more generally any allocation based on “natural decompositions” — assign a zero

contribution to any component of income which is equally distributed. In general terms, this

means that current methods conform more with the model based on (6.3), which looks for

the contribution of income differences, rather than the model based on (6.2), which seeks

the contributions of income levels.

The Shapley decomposition is able to handle both interpretations, and therefore

provides a richer range of possibilities. The results for the variance are the most easy to

derive. In this particular case, formulations (6.2) and (6.3) coincide and yield

(6.8) ,

so

(6.9)  

Using (3.14), it then follows that
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(6.10)

Thus, when the variance is used to measure inequality, the Shapley decomposition of

inequality by source generates the usual “natural” decomposition values given in (6.5),

regardless of whether the contributions are interpreted along the lines of (6.2) or (6.3).

Similar conclusions do not hold for any other index, although the result is partially true

when the square of the coefficient of variation is selected as the inequality index. In this

case, interpretation (6.3) yields

(6.11) ,

and repeating the above steps establishes that

(6.12) .

So the relative contribution of each factor again conforms with the natural decomposition of

the variance when the factors are viewed as income differences from the various sources.

Under the alternative scenario (6.2) based on income levels, the Shapley decomposition

does not appear to produce informative formulae for indices other than the variance. It is

possible, however, to draw one useful conclusion regarding the contribution of a source of

income which is distributed equally across the population. Assume that  for all ,

and that the index   is scale invariant and strictly Schur-convex. Then, since equal

income increments are equalising, we have

(6.13) .

So if  we can deduce that

(6.14) ,

from which  it follows that . Thus

PROPOSITION 5: Consider the decomposition of income inequality where the
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factors represent incomes from various sources. Suppose that the mean income

from each source is positive, and that the inequality index is scale invariant and

strictly Schur-convex. Then the Shapley decomposition will assign a negative

inequality contribution to any component of income which is distributed equally

across the population.

7. Concluding Remarks

The main objective of this paper was to describe a general method of assessing the

contributions of a set of factors which together account for the observed value of some

aggregate statistic. The proposed solution involves calculating the marginal impact of each

of the factors as they are eliminated in succession, and then averaging these marginal effects

over all the possible elimination sequences. The resulting formula is formally identical to the

Shapley value in cooperative game theory, and has therefore been referred to as the

Shapley decomposition.

The Shapley procedure has several basic features which make it an attractive candidate

for a general decomposition rule. It treats the factors in a symmetric manner; the

contributions sum to the amount which needs to be “explained”; and the contributions can

be interpreted as the expected marginal effect. This paper has demonstrated that it also

generates sensible results when applied to the standard decomposition problems

encountered in distributional analysis. In three classic situations, the Shapley rule exactly

replicates current practice: the application of decomposable poverty indices to population

subgroups; inequality decomposition by subgroups using the mean logarithmic deviation

index; and inequality decomposition by source of income using the variance as the measure

of inequality. In other applications, such as the growth-redistribution issue discussed in

Section 3.1, and the Gini decomposition considered in Section 5.2, it improves upon

existing methods by avoiding the need to introduce a residual component into the

decomposition equation. The paper has also shown how the Shapley procedure can provide

solutions to problems which have previously been difficult to address, such as multi-variate

poverty decomposition discussed in Section 4.

Most of these applications are concerned with specific situations where previous work
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has suggested simple expressions for the factor contributions, and where the Shapley

decomposition also yields explicit formulae, enabling the results to be compared. But the

great advantage of the procedure proposed in this paper is that it can be applied to a wide

range of problems which cannot be solved with existing techniques. Applications using other

aggregate indicators or more complex models are unlikely to yield simple analytic

expressions for the Shapley contributions, and will therefore require an algorithm to

calculate the values (and, ideally, also their standard errors). In many situations, there will

be sets of factors which group naturally together, suggesting a hierarchical model of the type

described in Section 4, and the replacement of the Shapley rule by the two-stage Owen

procedure. While it is difficult to predict the properties of the factor contributions in these

general circumstances, the results of Section 4 and elsewhere will help researchers

understand why certain features are observed in practice. For example, Propositions 1 and

2 will help explain why groups of factors can be treated as a single entity without affecting

their total contribution, and Proposition 5 tells us to expect that a negative inequality

contribution will be attached to any income component which is distributed roughly evenly

across the population.

Many other topics are obvious candidates for application of the Shapley decomposition

procedure. These include the division of  income mobility into structural and exchange

components; a breakdown of the distributional impact taxes and benefits; the decomposition

of wage inequality along the lines proposed by Juhn et al. (1993), and the measurement of

discrimination due to Oaxaca (1973). In the longer run, however, the applications with the

greatest potential are the standard econometric formulations of applied economics, which all

conform to the general specification  (1.1) indicated at the outset. Fields (1995) recognises

the link between conventional OLS regressions and the problem of decomposing income

inequality by source. The results of this paper suggest that the link can be extended to any

econometric specification used in applied economics, in order to supplement the standard

measures of statistical significance with an assessment of the relative importance of the

explanatory variables.
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Appendix

To demonstrate Propositions 1 and 2, we first define

(A.1) ,

and recall that

(A.2) .

Identifying the coefficient of  in the expansion of  reveals that

(A.3)

for all  and all . The proofs of Propositions 1 and 2 are now established via

the following two Lemmas

LEMMA 1: Consider the model , and suppose F is separable over .

Then, for all  and all , we have

(A.4)

PROOF: Let  and . Given that F is separable over L, condition (4.11) yields

(A.5)

Hence, using (A.3),
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(A.6)

This completes the proof of Lemma 1. ~

LEMMA 2: Given the hierarchical model , consider any  such that 

F is separable over each . Then, for all  and all , we have

(A.7)

PROOF: Let . Then repeated application of Lemma 1 yields

   

(A.8)    

   

   

This completes the proof of Lemma 2. ~

We now proceed to demonstrate Propositions 1 and 2.
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PROOF OF PROPOSITION 1:

 Let , , and . Then, using Lemma 1, we have

(A.9)

for all , as required in (4.12a). In addition, since the Shapley decomposition is exact, it

follows that

(A.10)

as required for (4.12b).

Finally, for all  and all s such that , separability over L implies

(A.11)  

using (A.3). Hence

(A.12)

as required for (4.12c), and the proof of Proposition 1 is complete. ~
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PROOF OF PROPOSITION 2:

 Consider any  and any , and let  and . Then, (A.11) and

Lemma 2 yield the Shapley contributions

(A.13)  

Since F is separable over L, it follows from (4.8) that 

(A.14)  .

So the proof of Proposition 2 is complete. ~


