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Motivation

The adequate evaluation of success of market
reforms in transition economies necessarily in-
cludes the assessment of the reform social cost,
including welfare redistribution. The main source
of information on the distribution of income,
expenditures and wealth are population surveys
[1,2]. Various distortions and deficiencies of the
available survey micro data complicate this as-
sessment. Because of wage arrears, as well as
high shares of informal economic activities, in-
cluding home production, the welfare of a
household is better represented by (per capita)
expenditures than by the officially reported in-
come. Besides, survey participation rates tend to
differ in different welfare groups. One of the
manifestations of those deficiencies is a huge
discrepancy between the mean income as found
from the macroeconomic statistics, and one
found from survey data. For the time period
analyzed in this paper, the macroeconomic mean
income for the Q4 1998 as reported in [3] is 1211
rub., while the sample mean from the raw data
[2] is 913 rub.

The distributional model currently used by the
Russian statistical authority, Goskomstat (The
State Committee on Statistics) is the lognormal
distribution [4], for which the location parameter
(mean or mode) is estimated from macroeco-
nomic trade statistics, and the variance parameter
is estimated from sample income data.

We propose several refinements to this model.
The first one is to use expenditure information
that seems to represent the household financial
situation better than income. The second is to
approximate the shape of expenditure distribu-
tion by a univariate mixture of lognormal com-
ponents. Such a model can be estimated by the
maximum likelihood method from survey data,
with special attention paid to the choice of the

appropriate number of the mixture components.
Third, we introduce weights to account for pro-
pensity to avoid disclosing income information.
Finally, having estimated the above model, we
use a parametric bootstrap to reconstruct the ob-
servations from the range of very high expendi-
tures not touched upon by the sample. The esti-
mates of the expenditure distribution thus ob-
tained are used to construct popular inequality
and poverty indices. The results suggest that un-
adjusted estimates of income inequality and pov-
erty (including the officially reported poverty
rates and the values of Gini index) might be seri-
ously biased downwards.

Assumptions and Hypotheses

The following assumptions and hypotheses are
used throughout the analysis.

Hypothesis H; states that the per capita expen-
ditures distribution of Russian households can be
adequately described by a mixture of lognormal
laws. This hypothesis can be verified by fit crite-
ria such as the Pearson X° or Kolmogorov-
Smirnov test (the latter is known to have low
power when there are parameters to be estimated
though). A justification for such discrete mixture
is that the contemporary Russian society is be-
lieved to be stratified into several income groups,
including “old economy” workers, “new econ-
omy” workers, and entrepreneurs, with incomes
varying about an order of magnitude between
groups. Assuming that the distribution within
each group is lognormal, the discrete mixture is a
reasonable approximation once the groups are
well separated. The hypothesis H; provides a
flexible not-so-parametric approach to density
estimation.

Hypothesis H, states that the probability of
household refusal to participate in the official
budget survey is a function of its social, eco-
nomic, and geographical characteristics. This
hypothesis was suggested by E. B. Frolova, the
Head of Living Standards Department of Go-
skomstat, and was taken from field experience.
As long as we use panel data (see description
below in the Data section), we can find both fi-
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nancial and demographic characteristics for some
of the households that declined to participate in
the survey. We then fit a logistic regression to
those available data, and significance of this re-
gression indicates support for hypothesis H,.
Assumption Hs states that in the lognormal mix-
ture model, the coefficient of variation is con-
stant across components, or equivalently that the
variance of logarithms is constant. This assump-
tion simplifies estimation, since if we assume
that the variance can vary across the mixture
components, then the estimation procedure may
fail to converge [5].

Finally, the assumption H, states that there is a
latent range of expenditure unobserved in sur-
veys at the upper of end of expenditure distribu-
tion, and the population expenditure distribution
in this range is again lognormal with a shift pa-
rameter X(ny = max{x;} where x; is the per capita
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expenditure of i-th household. Assumption H; of
constant variance serves as an identifying one:
having estimated the variance in the observed
data range, the same variance can be used for the
latent component, also.

The first two hypotheses H; and H, are verifi-
able, while the latter two H; and H, are identifi-
cation conditions.

Thus, the density of the expenditure distribution
in our model can be written as follows:
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g;, j=1,...k+1, the component weights in the
mixture, & are the component means, o, the
standard deviation of logs in the j-th component
(we assume o = 0, =...= ¢ according to Ha);
and Xo = X is the largest observed expenditure.
The number of observed components is k (un-
known), and the k+1-st component is unob-
served. The parameters of the observed compo-
nents can be estimated by maximum likelihood
procedures, while those of the unobserved one,
from additional macroeconomic data. We shall
also need to assume that the population share of
this latent component is much smaller than any
of the ones estimated.

Data

The only publicly available household data for
Russia is the Russian Longitudinal Monitoring

Survey (RLMS) run by the Carolina Population
Center at University of North Carolina at Chapel
Hill*. The project started in 1991, but the sample
quality was found to be poor, so a new sample
was created in 1994. The new sample used a
multistage clustered design with 38 strata, of
which 3 are self-representative metropolitan ar-
eas, and 1 PSU per stratum. The original sample
consists of 4718 households, and there are 3600-
3800 households (~10 ths. individuals) actually
participating in each round. The data is collected
in the fourth quarter of the year (Round V, 1994;
Round VI, 1995; Round VII, 1996; Round VIII,
1998; Round IX, 2000). This research used
Round VIII data.

The RLMS questionnaire contains expenditures
for a large number of goods and services. This
data can be aggregated to broad categories of
goods and services, and to total expenditures.
The raw data include a wide range of items,
though the time span in each category might be
different. The expenditures for food (~60 items)
are based on weekly reports; fuel, services (with
a breakdown to about 10 items), rent, club pay-
ments, insurance premia, savings and credits
have a one month window; non-food consumer
goods and durables expenditures are measured
on the quarterly basis. RLMS also traces annual
home production, as well as intermediate expen-
ditures for subsistence plots. All those data are
rescaled on monthly basis and published sepa-
rately from the raw data. We used this “cleaned”
data in our analysis.

Auxiliary data on refusals were used in deriving
household sample weights that included codes of
the survey results, i.e. whether the survey was
conducted, and if not, why, with a breakdown
into about three dozen main reasons.

Estimation

The first stage of the estimation is procedure is
the estimation of the sample weights. A logistic
regression model was formulated that used the
non-response variable as the dependent variable,
and mean over all available years household ex-
penditures (deflated with the standard RET de-
flator?), household head education level, and
rural / urban / metropolitan areas dummies as
regressors. There were 29 households (out of
total 4239 households where the survey was
conducted at least once in four rounds V-VIII)
that stated they do not want to be surveyed be-
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cause they did not want to disclose their income
information. The pooled number of refusals
across all refusal codes is 795. Thus, there are
several possibilities for the dependent variable: a
dummy for refusal because of the financial con-
siderations, dummy for all refusals, and the pro-
portion of time the household refused to partici-
pate in the survey. The first regression with the
“don’t want to tell our income” dummy turned
out to produce insignificant results, most likely
because of a very low proportion of such re-
sponses. The one with the “ever refused”
dummy, however, did produce sensible results
summarized in Table 1.

Table 1. Non-response probabilities.
Prob[refrain from survey at least once]=logit(s)

log(mean Urban, metro | Education
expenditure)
0.399 ++ -
(0.079)**

Refusal probabilities
within sample prediction

T T T T
500 1000 5000 10000
Smoothed per capita expenditures

T
100

Figure 1. Response probabilities for population
groups. Legend: R, rural; U, urban; M, metropolitan;
H: higher education; S: secondary education; L: low
education, less than 8 years of schooling.

We found that ceteris paribus, the effect of
household expenditures is positive and signifi-
cant. Households in the urban areas, and espe-
cially in the metropolitan areas (self representing
strata of Moscow, St. Petersburg, and Moscow
suburbs), are more likely to drop out of the sam-
ple, as opposed to the rural households, even
controlling for incomes that are higher in the met
areas. Households with better-educated heads
refuse less often to answer, on average.

The weights obtained from the above logistic
model were combined with the post-stratification
weights provided along with the raw data. The
effect of the weighting was not very substantial —
see Table 3 below.

The mixture model (1) (or rather the observed
part of it) can be estimated from the available
micro data by using maximum likelihood proce-
dures [5,6] or the EM-algorithm [7,8,9]. The
weights obtained earlier can be used in the
maximization procedure, as well.

One of the most important questions in this
maximization problem is the estimation of the
number of components k. A natural suggestion
would be to consider a sequence of nested hy-
potheses on the number of components H,: k=u,
u=1,2,..., and test them one by one with a likeli-
hood ratio test, H; against H,, H, against Hj, etc.,
until one fails to reject the increase in the number
of components. It turns out however [10,11] that
the likelihood ratio statistic does not have a con-
venient x? distribution, but rather a mixture typi-
cal for estimation on the boundary.

To avoid the complications, information criteria
or goodness of fit tests can be used to choose the
appropriate k. We used the standard AIC and
SBIC criteria, as well as another one of the fam-
ily, ICOMP [12]. We also used Pearson x? test to

Table 2. The mixture estimation results (9176 observations).

# of mix- Log likeli- Akaike SBIC ICOMP Goodness of | p-value Component
ture comp-s hood at criterion fit test G2 parameters
/ times maximum (AIC) x(d.f) {ai,qi}
converged
1/20 -11684.61 23373.21 23387.46 . 152.54(11) 10% 0.865 6.343
2/9 -11618.34 23244.67 23273.17 23244.78 96.39 (9) 10" 0.826 6.370: 98.9%
3.914: 1.1%
2/10 -11633.65 23275.29 23303.79 23278.39 98.24 (9) 10" 0.838 6.326: 99.36%
8.968: 0.64%
3/18 -11532.21 23076.42 23119.17 23078.59 58.30 (7) 310" 0.756 6.340: 95.8%
8.282: 2.3%
4.159: 1.8%
4/11 -11520.49 23056.98 23113.97 23058.96 58.40 (5) 310" 0.716 6.297: 90.96%
7.618: 6.54%
4.235:2.29%
9.790: 0.21%
5/8 -11515.97 23051.95 23123.19 23049.66 52.27 (3) 310" 0.684 6.294: 87.62%
7.562: 8.40%
4.652: 3.54%
9.766: 0.23%
3.022: 0.22%

Source: authors’ calculations based on the RLMS data, with post-stratification and non-response adjustment weights.



compare the actual distribution with the hypo-
thetical mixture with estimated parameters.

Stata 6 statistical software [13,14] was used
throughout the analysis. The particular advantage
of this software for our purposes is its open-end
likelihood maximization procedure [15] that allo-
ws maximizing likelihood functions specified by
the user. A Stata module denor i x was deve-
loped that performs the numeric maximization
using the ML procedure as well as a number of
diagnostic tests that help determining the optimal
number of components. The software is available
from the corresponding author’s webpage®.

The results for 20 runs of the maximization pro-
cedure are reported in Table 2. We decided that
the model with k=3 (and thus six parameters to
be estimated) provides the best results, even
though the p-value of the goodness of fit test is
still very low. Models with a lower number of
components do not fit data well (and there are
multiple local maxima for the case of two com-
ponents), while in those with a larger number of
components, the maximization procedure failed
to converge. It either was stuck in a flat region,
or converged to a model with a smaller number
of components (i.e. one of the estimated compo-
nents coincided with another). The model seems
to be misspecified even with fairly large number
of components, as the p-values of the goodness
of fit test suggest. We attribute this to the “large
sample curse”. Our experience with other unre-
lated samples of several hundreds observations
shows that the estimation of mixture model may
result in p-values of about 10%.

Economic Interpretations

We see from Table 2 that all estimated mixture
models have a dominant modal component, and a
number of components with rather small popula-
tion shares at the tails. It thus seems that model
misspecification is related to failure to fit the
tails. The graphical analysis of the CDF curves
(not reported here) shows that this is indeed the
case, with the fit lacking mainly at the upper part
of distribution. For some applications, lack of fit
in tails can be tolerable, but it is crucial for pov-
erty and inequality indices that are related to the
tails of the expenditure distribution.

We are interested in estimating the following
popular quantities: the Gini coefficient [16,17]
and Foster-Greer-Thorbecke indices [18] with
exponents 0 (head count ratio) and 2 (poverty
depth). While the latter indices can be computed

® http://www.komkon.org/~tacik/stata/. The program is
also available in the Statistical Software Components
archive at Boston College; http://ideas.ugam.ca.

directly from mixture parameter estimates, using
the expression for the incomplete moments of the
lognormal distribution [19]:

z A 2
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and are insensitive to the particular choice of the
latent component parameters, the Gini coefficient
cannot be expressed as a function of distribution
moments. In its sample form, it is a linear com-
bination of the order statistics. Thus to proceed
to the estimation of inequality indices, we need
to reconstruct the latent component by using the
hypothesis H,.

From (1)-(3), we can establish that the mean of
the distribution (1) is
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(4)
The first term in the sum, up to a straightforward
scaling of the weights, is the mean of the esti-
mated distribution in its observed range (reported
in the second column of the Table 3 below). The
mean expenditure yu is equated to that derived
from macroeconomic statistics (column 3 of Ta-
ble 3). After applying the identifying assumption
Hs, the problem is reduced to the choice of two
parameters such that
u(qlzﬂ’ alz+1) :'Jmacro (5)
After choosing a particular point on this curve,
we use parametric bootstrap from the estimated
distribution to get the Gini coefficient. It turned
out that the choice of the latent component pa-
rameters did not have much effect on the result-
ing number, so we used ay;=13 with corre-
sponding share qy.;=4.310™,
The results are reported in Tables 3 and 4, and
the graphical representation of inequality com-
parisons by Lorenz curves® is given at Fig. 2. We
can see that the lognormal model predicts the
lowest inequality (the upper curve), with the
model without the latent component and raw
(unweighted) data Lorenz curves somewhat be-
low it, and a drastically different curve evidenc-
ing much higher inequality, for the model with
the latent component included. The value of the
Gini coefficient of about 0.6 suggests that Russia
is a country with very high inequality (like that
in Brazil or South Africa). The values in high 30s
— 40s are more typical for countries like the US,

* Lorenz curve L(p) of an income distribution is a pro-
portion of income that p percent of population with the
lowest incomes receive. The Gini coefficient is twice
the area between the Lorenz curve and the 45° line.



Table 3. The results of the distribution calibration
and inequality comparisons for Russia, Q4 1998.

Mean expenditure, Gini index
ths. rbs.
Raw Cali- With the | Rawdata | With the
brated latent latent
compo- compo-
nent nent
0.913 0.952 1.211 0.478, 0.610
(+2%) (+29%) 0.380 [3]

Source: [3]; authors’ calculations based on the RLMS
data. The second column is the mean with the
weights accounting for post-stratification as well as
non-response probability.

Table 4. Poverty indices for Russia, Q4 1998.

Official Lognor- | Mixture [ Sample
figure [3] | mal model
model

Poverty
rate 28,4 52,5 52,8 53,9
Poverty
depth N/A 0,139 0,130 0,137
(FGT(2)

Source: [3]; authors’ calculations based on the RLMS
data. Poverty rate is 636 rubles [3].

and values in high 20s-low 30s, for Nordic
countries.

,,,,, Lognormal model
— — 3+1 components

I 3 components
———RLMS
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Figure 2. Lorenz curves for different models.

Finally, the analysis of sensitivity of the results
with respect to some of the model assumptions
was performed. The assumption H, of the exis-
tence of the latent component can be reformu-
lated as follows: all of the discrepant expendi-
tures are due to this unobserved component. An
alternative assumption can be that all households
can be observed, and the discrepancy is due to
misreporting (i.e. households fail to report their
true expenditure). There is a continuum between
the two, and in the simplest form, we can assume

Gini index

that each household underreports its expenditures
by a fraction of A. So in terms of A, the previous
analysis assumed A=0. The sensitivity analysis
included recalculation of (4) corrected for A, and
drawing 20 parametric bootstrap samples of size
400000 from the estimated distribution. The
sample size was chosen so that the smallest com-
ponent will still be represented by at least a hun-
dred observations.

Left to right:
0%, 5%, 10%, 15%

Overlapping hidden stratum

Figure 3. The Gini coefficient sensitivity
to misreporting.

The results of the sensitivity analysis are pre-
sented on Fig. 3. Despite rather large sample
size, the variability in the value of Gini coeffi-
cient across simulations is quite pronounced.
Still, the downward trend is also notable, as we
move to higher A’s, which corresponds to the
gradual transition between the “3 components”
and “3+1 components” curves on Fig. 2. Proba-
bly the assumption of some 5 to 10 per cent re-
porting error is more reasonable than one of no
error at all, so a more realistic value of the Gini
coefficient is 0.56-0.59.

Remarks

There are a number of nuances in the budget data
analysis that were not pursued here. In particular,
one of the options was to employ equivalence
scales to account for the difference in needs of
households of different size and composition. It
can be argued that economies of scale are not
substantial in Russia, as the rent and other fixed
expenses of a household are pretty low. This and
many other points are discussed in [20] that goes
into deeper discussion of both statistical and
economic issues raised by this research.

Conclusion
This paper proposed to estimate expenditure dis-

tribution by the finite mixture of lognormal com-
ponents. The maximum likelihood is the most



appropriate way to estimate the parameters of
such mixture. By using Russian data for Q4
1998, we showed that the mixture model, with
additional weights accounting for non-response
related to particular factors, performed better
than a standard lognormal one. The mixture with
three components was found the most appropri-
ate. A parametric bootstrap was suggested to
recover the observations in the unobserved range
of expenditures. The results differ substantially
from the figures reported by Russian statistical
authorities. In particular, the estimate of the Gini
coefficient obtained from our model is 0.56-0.59,
which is much greater than the official one of
0.38.
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